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Abstract

The problem of entropy generation in a fluid saturated porous cavity for laminar magnetohydrodynamic natural

convection heat transfer is analyzed in this paper. Heat transfer results are also presented additionally. Darcy’s law for

porous media is considered. Magnetic force is assumed acting along the direction of the gravity force. As boundary

conditions of the cavity, two vertical opposite walls are kept at constant but different temperatures and the remaining

two walls are kept thermally insulated. For a range of Rayleigh number (Ra ¼ 1–104) and Hartmann number

(Ha ¼ 0–10), heat transfer, overall entropy generation rate, and heat transfer irreversibility are presented in terms of

dimensionless Nusselt number (Nu), entropy generation number (Ns), and Bejan number (Be), respectively. Finally,
parametric results are presented in terms of isothermal lines, streamlines, isentropic lines, and iso-Bejan lines.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convection heat transfer inside a square and/

or rectangular cavity is not a new problem for research.

A rich and variety of experimental, numerical, and

analytical results have been published for last two/three

decades due to its importance in many engineering

applications, including heating and cooling of rooms,

nuclear and electronic equipment cooling, etc. The re-

search of natural convection in porous media has been

conducted widely in recent years, which involves post-

accidental heat removal in nuclear reactors, cooling of

radioactive waste containers, heat exchangers, solar

power collectors, grain storage, food processing, energy

efficient drying processes, to name of a few. The process

of manufacturing materials in industrial problems and

microelectronic heat transfer devices involve an electri-

cally conducting fluid subjected to a magnetic field. In

that case the fluid experiences a Lorentz force and its
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effect is to reduce the flow velocities. This in turn affects

the rate of heat and mass transfer. It is, therefore,

important to study the detailed characteristics of trans-

port phenomena in such a process so that good quality

product can be developed with improved design in the

manufacturing processes. For a good and comprehen-

sive reference of above mentioned topics, see articles by

Yang [1], Kulacki et al. [2], and Bejan [3].

Most of the published articles related to the cavity

problem are restricted, in the thermodynamic point of

view, to only First-law (of thermodynamics) analysis.

The contemporary trend in the field of heat transfer and

thermal design is Second-law (of thermodynamics)

analysis and its design-related concept of entropy gen-

eration and its minimization [4]. Entropy generation

minimization (EGM) is the method of modeling and

optimization of real devices that owe their thermody-

namic imperfection to heat transfer, mass transfer, and

fluid flow irreversibilities. It is also known as ‘‘thermo-

dynamic optimization’’ in engineering, where it was first

developed, or more recently as ‘‘finite time thermody-

namics’’ in the physics literature. The method combines

from the start the most basic principles of thermo-

dynamics, heat transfer, and fluid mechanics.
ed.
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Nomenclature

A aspect ratio of the cavity

Ac cross-sectional area of the cavity (m2)

B0 downward component of the magnetic force

(Wbm�2)

Be Bejan number, Eq. (10)

Cp specific heat at constant pressure

(J kg�1 K�1)

Cs specific heat of the solid (J kg�1 K�1)

Ec Eckert number, ¼ u20Cp=DT
g gravitational acceleration (m s�2)

FFI fluid friction irreversibility

h convective heat transfer coefficient

(Wm�2 K�1)

Ha Hartmann number, ¼B0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
reK=l

p
HTI heat transfer irreversibility

k thermal conductivity of the fluid

(Wm�1 K�1)

K permeability of the porous media (m2)

L length and width of the cavity (m)

Ns entropy generation number, ¼ S 000
gen=S

000
0

Nu Nusselt number, ¼ hL=k
Pr Prandtl number, ¼ lCp=k
Ra Darcy-modified Rayleigh number, Eq. (3)

Ra� Darcy–Hartmann-modified Rayleigh num-

ber, ¼ Ra=ð1þ Ha2)
S000
0 characteristic transfer rate, ¼ kðDT Þ2=ðLT0Þ2

(Wm�3 K�1)

S000
gen local entropy generation rate (Wm�3 K�1)

t time (s)

T temperature of the fluid (�C)
u velocity component at x-direction (m s�1)

U dimensionless velocity component at x-
direction

v velocity component at y-direction (m s�1)

V dimensionless velocity component at y-
direction

u0 reference velocity, ¼ aL
x distance along the x-coordinate (m)

X distance along the dimensionless x-coordi-
nate

y distance along the y-coordinate (m)

Y distance along the dimensionless y-coordi-
nate

Greek symbols

a thermal diffusivity of the fluid (m2 s�1)

b volumetric coefficient of thermal expansion

(K�1)

d boundary layer thickness (m)

l dynamic viscosity of the fluid (Pa s)

m kinematic viscosity of the fluid (m2 s�1)

q density of the fluid (kgm�3)

qs density of the solid (kgm�3)

/ porosity of the porous media

w streamfunction (m2 s�1)

W dimensionless streamfunction, ¼ w=a
r an empirical constant, Eq. (3)

re fluid electrical conductivity (X�1 m�1)

H dimensionless temperature, Eq. (3)

s dimensionless time, Eq. (3)

X dimensionless temperature difference,

¼ DT=T0
8 volume of the cavity (m3)

Subscripts and superscripts

av average value

C value at the cold wall

H value at the hot wall

0 reference value
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This new trend of optimization is important and, at

the same time, necessary, if the heat transfer community

is to contribute to a viable engineering solution to the

energy problems. Entropy generation is associated with

thermodynamic irreversibility, which is present in all

types of heat transfer processes. Different sources of

irreversibility are responsible for heat transfer’s genera-

tion of entropy like heat transfer across finite tempera-

ture gradient, characteristics of convective heat transfer,

viscous effects, etc. Bejan [4] focused on the different

reasons behind entropy generation in applied thermal

engineering. The generation of entropy destroys the

available work of a system. Therefore, it makes good

engineering sense to focus on the irreversibility of heat

transfer and fluid flow processes, and try to understand

the function of the entropy generation mechanism(s).

Bejan [5] first presented the Second law aspect of heat
transfer using different examples of fundamental forced

convection problems. He introduced the concept of

entropy generation number, irreversibility distribution

ratio, and presented the spatial distribution of irrevers-

ibility, entropy generation profiles or maps for the

example problems. Since then, numerous investigations

have been carried out to determine the entropy genera-

tion and irreversibility profiles for different geometric

configurations, flow situations, and thermal boundary

conditions. Yilbas et al. [6] presented qualitative and

quantitative results of entropy generation inside a dif-

ferentially heated non-porous square cavity. For a por-

ous cavity, Baytas [7] presented results of entropy

generation at different orientations of a square cavity

considering the Darcy model. Salas et al. [8] analytically

showed a way of applying the entropy generation anal-

ysis for the modeling and optimization of MHD
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induction devices. Salas et al. [8] restricted their analysis

to only Hartmann model of flow in a channel. For a

mixed convective flow, Mahmud et al. [9] gave a detailed

analysis of the entropy generation nature and source of

irreversibility in a vertical non-porous channel with

transverse hydromagnetic effect. An extension of the

above problem for porous media is available in Tasnim

et al. [10]. For other geometric configurations and/or

flow situations, an extensive review on Second-law

analysis of fundamental problems of heat transfer are

available in Mahmud and Fraser [11].

In the view of the above arguments, this study is

conducted to examine the flow, temperature, and entropy

generation fields inside a square porous cavity when

subjected to natural convection due to differentially he-

ated sidewalls and an applied magnetic field acted to-

wards the direction of the gravity. The governing flow

and energy equations are considered for two-dimensional

laminar case. A numerical method is conducted based on

control volume approach. The resulting Nusselt, entropy

generation, and Bejan numbers’ variation are investi-

gated as a function of two independent parameters:

Rayleigh number and Hartmann number.
2. Problem formulation

Consider the flow of a Newtonian fluid within a

square porous enclosure as shown in Fig. 1. The non-

dimensional governing equations are obtained with fol-

lowing assumptions: (a) the cavity is completely filled

with porous material, (b) Darcy’s law is assumed to

hold, (c) the fluid is assumed to be a normal Boussinesq-
Fig. 1. Schematic diagram of the problem under consideration.
incompressible fluid, (d) negligible inertial effects, (e) the

saturated porous medium is assumed to be isotropic in

thermal conductivity, and (f) magnetic force is acting

along the direction of the gravity. Finally, the set of non-

dimensional governing equations in terms of the stream

function (W) and temperature (H) are as follows

o2W
oX 2

þ ð1þ Ha2Þ o
2W
oY 2

¼ �Ra
oH
oX

; ð1Þ

oH
os

þ oW
oY

oH
oX

� oW
oX

oH
oY

¼ o2H
oX 2

þ o2H
oY 2

; ð2Þ

where the dimensionless variables are defined by

ðX ; Y Þ ¼ x
L
;
y
L

� �
; ðU ; V Þ ¼ u

a=L
;
v

a=L

� �
; W ¼ w

a
;

s ¼ a
rL2

� �
t; Ra ¼ gbDTLK

am
; H ¼ T � TC

TH � TC
;

Ha ¼ B0

ffiffiffiffiffiffiffiffi
reK
l

s
; r ¼ /qCp þ ð1� /ÞqsCs

qCp
:

ð3Þ

The non-dimensional streamfunction, W, satisfies the

following equations

oW
oY

¼ U and
oW
oX

¼ �V : ð4Þ

Eqs. (1) and (2) are subjected to the following boundary

conditions:

Y ¼ 0 and 06X 6 1 : W ¼ 0 and oH=oY ¼ 0;

Y ¼ 1 and 06X 6 1 : W ¼ 0 and oH=oY ¼ 0;

X ¼ 0 and 06 Y 6 1 : W ¼ 0 and H ¼ 0;

X ¼ 1 and 06X 6 1 : W ¼ 0 and H ¼ 1:

ð5Þ

Eqs. (1) and (2) along with the boundary conditions

given in Eq. (5) are solved using a control volume based

finite-volume method [12]. A non-staggered and non-

uniform grid system is used with a higher mesh den-

sity near the walls. TDMA solver solves discretized

and linearized equation systems. For unsteady terms,

Crank–Nicolson method is applied. The whole compu-

tational domain is subdivided by an unequally spaced

rectangular mesh. Four grid sizes (32 · 32, 64 · 64,
100· 100, and 128 · 128) are chosen for analysis. Aver-

age Nusselt number for all four grid sizes are monitored

at Ra ¼ 103 and Ha ¼ 0. The magnitude of average

Nusselt number at 128· 128 grids shows a very little

difference with the result obtained at 100· 100 grids. For
rest of the calculation in this paper we chose a grid size

of 128· 128 for better accuracy. The time increment (Ds)
was 10�4 in most cases; but sometimes, especially at high

Ra smaller values were chosen in order to confirm the

accuracy of the results.

For the benchmarking purpose, a differentially he-

ated square porous cavity with zero magnetic forces is



Table 1

Comparison of average Nusselt number with some previous numerical results

Nuav

Ra ¼ 10 Ra ¼ 100 Ra ¼ 1000

Baytas and Pop [13] 1.079 3.16 14.06

Walker and Homsy [14] – 3.10 12.96

Gross et al. [15] – 3.14 13.45

Manole and Lage [16] – 3.12 13.64

Moya et al. [17] 1.065 2.80 –

Present prediction 1.079 3.14 13.82
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considered. Average Nusselt number is calculated for

three different Rayleigh numbers (Ra ¼ 10, 100, and

1000) and compared with the available published works

by Baytas and Pop [13], Walker and Homsy [14], Gross

et al. [15], Manole and Lage [16], and Moya et al. [17].

This comparison is shown in Table 1. It is seen from

Table 1 that the agreement between the present and the

previous results is very good. Therefore, we are confi-

dant that the numerical method used and the results

presented in this paper are very accurate.
3. Entropy generation

The dimensionless form of entropy generation rate

(S000
gen) is termed as entropy generation number [4]. En-

tropy generation number (Ns) is the ratio between the

volumetric entropy generation rate (S000
gen) and a charac-

teristics transfer rate (S000
0 ). The characteristics transfer

rate for the present problem can be estimated from the

following equation:

S0
0 ¼

kðDT Þ2

L2T 2
0

: ð6Þ

For the porous media, which follows the Darcy model,

the local rate of entropy generation (S000
gen) can be calcu-

lated from the following equation:

S000
gen ¼

k
T 2
0

ðrT Þ2 þ l
KT0

ðVÞ2 þ 1

T0
½ðJ� QVÞ � ðEþ V� BÞ
;

where

J ¼ reðEþ V� BÞ: ð7Þ

The detailed derivation of the above equation is available

in Woods [18]. In Eq. (7), J, Q, V, E, B, re, and T0 are

electric current, electric charge density, velocity vector,

electric field, magnetic induction, fluid’s electrical con-

ductivity, and reference temperature, respectively. It is

assumed that in the effective current density term

(J� QV) of Eq. (7), J� QV. Similarly, the electric force

per unit charge (E) is assumed negligible compared to the

magnetic force per unit charge (V� B). Eq. (7) can be

simplified for the present problem in the following form:
S0
gen ¼

k
T 2
0

oT
ox

� �2
"

þ oT
oy

� �2
#
þ l
KT0

ðu2 þ v2Þ þ reB2
0

T0
u2;

ð8Þ

which can be expressed in its dimensionless form by the

following expression:

Ns ¼
S000
gen

S000
0

¼ oH
oX

� �2
"

þ oH
oY

� �2
#
þ Ec� Pr

X
oW
oX

� �2
"

þ oW
oY

� �2

þ Ha2
oW
oY

� �2
#
; ð9Þ

where Ec, Pr, and X are the Eckert number, Prandtl

number, and dimensionless temperature difference,

respectively. As a combination (Ec� Pr=X), these three

parameters together are termed a group parameter. Eq.

(9) consists of two parts. The first part (first square

bracketed term at the right-hand side of Eq. (9)) is the

irreversibility due to finite temperature gradient and

generally termed as the heat transfer irreversibility

(HTI). The second part (second square bracketed term)

is the contribution of fluid friction irreversibility (FFI)

to entropy generation. The overall entropy generation,

for a particular problem, is an internal competition be-

tween HTI and FFI. Usually, free convection problems,

at low and moderate Rayleigh numbers, are dominated

by the heat transfer irreversibility. Entropy generation

number (Ns) is good for generating entropy generation

profiles or maps but fails to give any idea whether fluid

friction or heat transfer dominates. Two alternate

parameters, irreversibility distribution ratio (U) and

Bejan number (Be), are achieving an increasing popu-

larity among the Second-Law analysts. Bejan number

(Be), which is the ratio of HTI to the total entropy

generation (Ns), can be mathematically expressed as

Be ¼ HTI

HTIþ FFI
: ð10Þ

Bejan number ranges from 0 to 1. Accordingly, Be ¼ 1 is

the limit at which the heat transfer irreversibility domi-

nates, Be ¼ 0 is the opposite limit at which the irre-

versibility is dominated by fluid friction effects, and
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Be ¼ 1=2 is the case in which the heat transfer and fluid

friction entropy generation rates are equal.
4. Results and discussion

The parameters which influence the flow, heat

transfer, and entropy generation rate inside the cavity

are Rayleigh number, Hartmann number, group

parameter, and Prandtl number. Both Rayleigh and

Hartmann numbers are preferred as independent vari-

ables, while the Prandtl number is kept constant

throughout this investigation. However, the group

parameter (Ec� Pr=X) depends on the fluid and flow

properties and hence there is an indirect relation with

Rayleigh and Hartmann numbers. Group parameter is

automatically adjusted by the numerical code once a

change is done on Rayleigh and Hartmann numbers.
5. Flow and thermal field

For the special case, Ha ¼ 0, flow and thermal fields’

results are available in Baytas [7] for a square cavity and

Baytas and Pop [13] for square and oblique cavities.
Fig. 2. Streamlines and isothe
With a few exceptional cases these results will not be

repeated here.

Streamlines inside the cavity is shown in Fig. 2(a)–(c)

for three different values of Hartmann numbers, Ha ¼ 0,

5, and 10, for Ra ¼ 100. Corresponding isothermal lines

are presented in Fig. 2(d)–(f). For Ra ¼ 100, convection

current inside the cavity is well set. A counterclockwise

circulation appears (Fig. 2(a)) due to the effect of up-

ward moving fluid near the hot wall and downward

moving fluid near the cold wall. In the absence of any

magnetic force (Ha ¼ 0), the usual convective distortion

of the isothermal lines occurs (Fig. 2(d)) with two ther-

mal spots: one at the bottom of the hot wall and another

at the top of the cold wall. Magnitude of the heat flux is

higher at theses two spots due to higher temperature

gradient. The distortion of isothermal lines appears due

the high convective current inside the cavity. An intro-

duction of a magnetic force acting along the direction of

the gravity force tends to retard the fluid motion inside

the cavity. For a constant Rayleigh number, strength of

circulation (presented by wmax) inside the cavity reduces

with increasing Hartmann number. As Hartmann

number increases, a large portion of the fluid in the

middle portion of the cavity becomes almost motionless.

This is supported by the elongated–stagnant core of the
rmal lines at Ra ¼ 100.
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streamline with increasing Hartmann number at

Ra ¼ 100. Distortion of isothermal lines as well as

thermal spots also start to disappear with increasing

Hartmann number. As Hartmann number increases,

isothermal lines inside the cavity approaches more and

more towards the conduction-like distribution pattern

(Fig. 2(e) and (f)) of isothermal lines. For large Hart-

mann number (Ha ¼ 10), Fig. 2(f) indicates that the

convection is almost suppressed, and the isotherms are

almost parallel to the vertical wall, indicating that a

quasiconduction regime is reached.

An explanation of the above behavior can be possible

by a scale analysis [19], which is purely mathematical in

nature. However, a physical explanation will be given

later. To perform a scale analysis, the non-dimensional

form of the momentum equation (Eq. (1)) is converted

into its dimensional form using different definitions

given in Eqs. (3) and (4). This dimensional form can be

written as

1

�
þ B2

0reK
l

�
ou
oy

� ov
ox

¼ �Kgb
m

oT
ox

: ð11Þ

Assuming the following scales for changes in x, y, and
T : x � d, y � L, and T � DT are valid. Using the scaling
Fig. 3. Streamlines and isothe
factors, the momentum equation together with the con-

tinuity equation can be written in the following forms:

momentum:

1

�
þ B2

0reK
l

�
u
L
;
v
d
� Kgb

m
DT
L

; ð12aÞ

continuity:
u
d
� v

L
: ð12bÞ

The two inertia terms at the left-hand side of Eq. (12a)

are balanced by the buoyancy term at the right-hand

side. The main objective of the scale analysis is to find a

simple but logical relationship between the velocity

components (u and v) and two dominating independent

parameters: Rayleigh number (Ra) and Hartmann

number (Ha). A close observation of Eq. (12a) reveals

that the terms associated with the magnetic force appear

with the velocity component u. A balance between the

first inertia term and the buoyancy term (of Eq. (12a))

constitutes a scale of velocity component u in the fol-

lowing form

u � KgbL
mð1þ B2

0reK=lÞ
DT
d

¼ a
d

� � Ra
1þ Ha2

¼ a
d

� �
Ra�;

ð13Þ
rmal lines at Ra ¼ 1000.
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and with the aid of Eqs. (12b) and (13) the scale factor

for velocity component v is

v � La

d2

� �
Ra

1þ Ha2
¼ La

d2

� �
Ra�: ð14Þ

Eqs. (13) and (14) have two different Rayleigh numbers:

Ra and Ra�. Bejan [19] defines the first Rayleigh number

(Ra) as Darcy-modified Rayleigh number due the pres-

ence of the permeability (K) term in its definition (see

Eq. (3)). Ra� is proposed to be the Darcy–Hartmann-

modified Rayleigh number and which is the ratio be-

tween Ra and (1þ Ha2). The proportionality between

the velocity components (u and v) and Ra� concludes

that an increasing Hartmann number reduces the mag-

nitudes of the velocity components inside the cavity as

long as the Darcy-modified Rayleigh number is kept

constant. In reality, a downward acting magnetic force

suppresses the buoyancy force and its action is similar to

a drag force; hence reducing the magnitudes of the

velocity components. The scale of the dimensionless

streamfunction (W) is given by the following:
102

A=1.0

W � vd

a
� L

d

� �
Ra

1þ Ha2
¼ L

d

� �
Ra�; ð15Þ
Ra

N
u a

v
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(b)

Fig. 5. (a) Average Nusselt number as a function of Rayleigh

number. (b) Average Nusselt number as a function of Hart-

mann number.
which is proportional to the flow rate (see Poulikakos

and Bejan [20]). For a constant Darcy-modified Ray-

leigh number, W decreases with increasing Hartmann

number, i.e., a reduction of the circulation strength in-

side the cavity. This argument is also supported by the

decreasing magnitude of Wmax (as reported at the bottom

of Figs. 2 and 3) with increasing Hartmann number. Fig.

3(a)–(c) shows the streamline distribution for Ra ¼ 1000

at Ha ¼ 0, 5, and 10. Corresponding isothermal lines are

shown in Fig. 3(d)–(f). At Ha ¼ 0, the flow field com-

prises a unicellular flow of relatively high velocity, cir-

culating around the entire cavity. A large and extended

portion of the fluid at the middle section of the cavity is

motionless, which is a characteristics flow feature at

Ra ¼ 1000 as obtained by other researchers, for example

Baytas [7]. Because of boundary layer effects, sharp

drops in temperature near the vertical walls (Fig. 3(d))

characterize the temperature field. Thermal spots are

elongated (compared to Fig. 2(d)) near hot and cold

walls at this Rayleigh number. If the magnetic field is

relatively strengthened, the flow circulation is progres-

sively inhibited by the retarding effect of the magnetic

body force. Two egg shaped cores appear at Ha ¼ 5.

Convective distortion of isothermal lines starts to dis-

appear with increasing Hartmann number as before.

Length of thermal spots are shortened at Ha ¼ 5 and

disappeared at Ha ¼ 10. At Ha ¼ 10, size of the core

increases with decreasing center to center vertical dis-

tance between two cores.
6. Heat transfer

Heat transfer’s result is presented in terms of the

global Nusselt number (Nuav) which is obtained by
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integrating the local Nusselt number (NuL) as shown in

the following equation:

Nuav ¼
Z 1

0

NuL dY ;

where

NuL ¼ k
DT

� �
oT
ox

����
x¼0

¼ oH
oX

����
X¼0

; ð16Þ
where k is the thermal conductivity of the fluid. To

visualize the variation of heat transfer inside the cavity a

range of Rayleigh number (Ra ¼ 100–104) and Hart-

mann number (Ha ¼ 0–10) is selected. The justification

of using the selected range of Hartmann number will be

discussed first before presenting the heat transfer’s re-

sult. It was already shown that the parameters (for

example u, v, W, etc.) considered in this investigation

have a direct relation with Darcy–Hartmann-modified

Rayleigh number (Ra�), which is a ratio between Ra and

(1þ Ha2). For two limiting cases of Hartmann number,

Ha ! 0 and Ha ! 1, Ra� approaches to Ra and 0,

respectively. The lower limit (Ha ! 0) is considered in

our investigation. However, to set a finite value for the

upper limit of the Hartmann number, the behavior of
Fig. 6. Isentropic lines and iso
the Ra� is monitored with the variation of Ha at different

Ra. Fig. 4 shows this monitored result. Three distinct

locations are identified in the Ra�–Ha profiles depending

on the value of Hartmann number. For Ha < 0:3, Ra�’s
distribution is almost independent of Ha and its value is

almost equal to Ra. For the range of Hartmann number,

0:36Ha6 10, Ra� decreases rapidly with increasing Ha.
An asymptotic behavior is observed in the Ra�–Ha
profiles for Ha > 10. One can notice that the variation of

Ra� with Ha is insignificant beyond Ha ¼ 10 for all Ra.
So, using Ha ¼ 10 as the upper limit for the range of

Hartmann number is justified.

Average Nusselt number is plotted as a function of

Rayleigh number in Fig. 5(a) at different values of

Hartmann number. Two distinct zones are identified in

the Nuav–Ra profiles depending on the value of Rayleigh

number. In the conduction-dominated zone, distribution

of Nuav is independent of the Rayleigh number’s incre-

ment and the magnitude of Nuav is equal to 1. In the

convection-dominated zone, Nuav increases almost line-

arly in logarithmic plot with increasing Rayleigh num-

ber. The extent of the conduction-dominated zone

increases with increasing Hartmann number. In the

convection-dominated zone, higher Hartmann number

shows a lower value of average heat transfer. A scaling

argument may be applied to visualize heat transfer’s
-Bejan lines at Ra ¼ 100.
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variation with Ra, Ha, or Ra�. According to Bejan [19],

the volumetric flowrate driven horizontally, in counter-

flow is of order vd; this stream carries enthalpy between

the two vertical walls at a rate

Qconvection � qCpvdDT � qCpDT
La
d

� �
Ra

1þ Ha2
: ð17Þ

From the above expression, one can easily identify the

decreasing tendency of heat transfer rate with increasing

Ha as long as Ra is constant. The variation of Nuav as a
function of Hartmann number for five different Rayleigh

numbers is shown in Fig. 5(b). Heat transfer rate is

maximum at Ha ¼ 0. Once a magnetic force is intro-

duced and strengthened, average Nusselt number (Nuav)
decreases rapidly and approaches its asymptotic value

(¼ 1). For smaller Ra, Nuav approaches Nuav ¼ 1 for

smaller value of Ha as shown in Fig. 5(b).
7. Entropy generation

The dimensionless forms of local entropy generation

rate (Ns) and heat transfer irreversibility (Be) are cal-

culated using Eqs. (9) and (10) once the values of W and

H are available from the converged solution. Contours
Fig. 7. Isentropic lines and iso-
of Ns (isentropic lines) and Be (iso-Bejan lines) for

Ra ¼ 100 and Ha ¼ 0, 5, and 10 are presented in Fig.

6(a)–(f), respectively.

At Ha ¼ 0 (Fig. 6(a)), entropy generation spreads all

over the cavity. Entropy generation rate is lower in

magnitude around the center of the cavity. Entropy

generates at a higher magnitude near the cavity walls.

Both of the vertical walls act as strong concentrators of

irreversibility due to higher values of near wall velocity

components and temperature gradient. In the presence

of magnetic force, the magnitude of entropy generation

rate is reduced. Vertical walls no longer act as strong

concentrators of irreversibility. A significant portion of

the cavity, extended along the horizontal direction at the

mid-height of the cavity, acts as an idle region for en-

tropy generation (see Mahmud and Fraser [21] and Das

et al. [22]) where entropy generation rate is zero or

negligible (see Fig. 6(b) and (c)). In the absence of the

magnetic force, a region along the diagonal that con-

necting the top corner of the cold wall and the bottom

corner of the hot wall shows high heat transfer irre-

versibility (Fig. 6(d)). It should be noted that a large

portion of the fluid at this region is either stagnant or

slower in motion leaving a negligible contribution of

fluid friction irreversibility (FFI) on overall entropy
Bejan lines at Ra ¼ 1000.



(a)

(b)

Fig. 8. (a) Average entropy generation number as a function of

Rayleigh number. (b) Average Bejan number as a function of

Rayleigh number.

(b)

(a)

Fig. 9. (a) Average entropy generation number as a function of

Hartmann number. (b) Average Bejan number as a function of

Hartmann number.
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generation rate (Ns). Thus, Bejan number, a ratio

between the heat transfer irreversibility and overall

entropy generation, shows higher values along this

diagonal region. Heat transfer irreversibility spreads all

over the domain after introducing the magnetic force.

The similarity between the distribution pattern of con-

tours of Ns and Be at Ha ¼ 5 and 10 indicates a domi-

nance of the heat transfer irreversibility over the fluid

friction irreversibility.

The above results for Ra ¼ 1000 are presented in Fig.

7(a)–(c) isentropic lines and Fig. 7(d)–(f) for iso-Bejan

lines. In the absence of a magnetic field (see Fig. 7(a)),

only a very thin region near two vertical walls acts as a

strong concentrator of irreversibility with a relatively

higher magnitude of Ns. Almost same pattern of entropy

generation is observed at Ha ¼ 5, but the magnitude of

Ns is low. Similar distribution pattern is observed at

Ha ¼ 10. Bejan number at Ha ¼ 0 (Fig. 7(d)) shows the

same diagonal dominance as is observed in Fig. 6(d).

The region occupied by Bejan contours thickens as the

magnetic force is introduced and strengthened. The local
entropy generation number (Ns) would be integrated

over the whole domain to obtained the volume averaged

(or global) entropy generation rate inside the cavity as

shown in the following equation

Nsav ¼
1

8

Z
8
Nsd8 ¼ 1

Ac

Z 1

0

Z 1

0

NsðX ; Y ÞdX dY ; ð18Þ

where 8 and Ac are the volume and the cross-sectional

area of the cavity, respectively. Similarly, average Bejan

number can be obtained from the following equation:

Beav ¼
1

8

Z
8
Bed8 ¼ 1

Ac

Z 1

0

Z 1

0

BeðX ; Y ÞdX dY : ð19Þ

Fig. 8(a) and (b) show the distribution of Nsav and Beav
as a function of Rayleigh number at different Hartmann

numbers as indicated in the figure. For Ha ¼ 0 and 1,

average entropy generation rate increases with increas-

ing Rayleigh number. However, the behavior of the

Nsav–Ra profiles is similar to the Nuav–Ra profiles for

Ha > 1. Two zones are identified in the Nsav–Ra profiles:

a region with invariable Nsav (region 1) and then a region
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with linearly varying (in logarithmic plot) Nsav (region

2). At low and moderate Rayleigh numbers with mag-

netic force, conduction dominates. Most of the contri-

bution on overall entropy generation comes from the

heat transfer irreversibility. Average Bejan number

shows a value closer to 1 (see Fig. 8(b)). Thus, the var-

iation of Nsav with increasing Ra is insignificant in region

1. A significant contribution on entropy generation

comes from the fluid friction irreversibility at compar-

atively higher Ra (region 2) due to high convection

current. A simultaneous increase of Nsav and decrease of

Beav characterize the nature of irreversibility at high Ra.
Higher Hartmann number shows lower entropy gener-

ation rate and higher heat transfer irreversibility at a

particular Rayleigh number in region 2. Fig. 9(a) and (b)

show the variation of Nsav and Beav as a function of Ha
at different Ra. Similar to the Nuav–Ha profile charac-

teristics, Nsav is maximum at Ha ¼ 0, decreases with

increasing Ha and approaches an asymptote at higher

values of Hartmann number. Magnitudes of Beav are

almost same for all Rayleigh numbers considered here at

Ha ¼ 0. Increases in the value of Ha have a tendency to

slowdown the fluid movement inside the cavity, thus

causing a relative increases of heat transfer irreversibility

(i.e., Beav).
8. Conclusions

We investigated numerically the First and Second

Laws (of thermodynamics) aspects of fluid flow and heat

transfer inside a porous cavity subjected to a magnetic

field acting along the direction of the gravity. A scale

analysis is also presented to ease our understanding

about flow and thermal fields’ behavior and heat

transfer rate inside the cavity. The effect of Rayleigh and

Hartmann numbers is tested on average Nusselt num-

ber, entropy generation number, and Bejan number.

Increases in the value of Ha (i.e. magnetic force) have a

tendency to retard the fluid motion inside the cavity.

Both Nuav and Nsav decrease with increasing Ha and

approach a limiting value (asymptotic value). In the

absence of magnetic force, entropy generation rate is

relatively higher in magnitude near two vertical walls.

Entropy generation rate is decreased in magnitude as the

magnetic force is introduced and strengthened. Local

Bejan number’s distribution shows a diagonal domi-

nance. Average Bejan number distribution with Ra or

Ha shows an opposite behavior when compared with

Nsav.
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